Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
3.
Pathol Res Pract ; 241: 154280, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2159729

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19) which has emerged as a global health crisis. Recently, more than 50 different types of potential COVID-19 vaccines have been developed to elicit a strong immune response against SARS-CoV-2. However, genetic mutations give rise to the new variants of SARS-CoV-2 which is highly associated with the reduced effectiveness of COVID-19 vaccines. There is still no efficient antiviral agent to specifically target the SARS-CoV-2 infection and treatment of COVID-19. Therefore, understanding the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 may contribute to discovering a novel potential therapeutic approach to the management of COVID-19. Recently, extracellular vesicle (EV)-based therapeutic strategies have received great attention on account of their potential benefits in the administration of viral diseases. EVs are extracellular vesicles containing specific biomolecules which play an important role in cell-to-cell communications. It has been revealed that EVs are involved in the pathogenesis of different inflammatory diseases such as cancer and viral infections. EVs are released from virus-infected cells which could mediate the interaction of infected and uninfected host cells. Hence, these extracellular nanoparticles have been considered a novel approach for drug delivery to mediate the treatment of a wide range of diseases including, COVID-19. EVs are considered a cell-free therapeutic strategy that could ameliorate the cytokine storm and its complications in COVID-19 patients. Furthermore, EV-based cargo delivery such as immunomodulatory agents in combination with antiviral drugs may have therapeutic benefits in patients with SARS-CoV-2 infection. In this review, we will highlight the potential of EVs as a therapeutic candidate in the diagnosis and treatment of COVID-19. Also, we will discuss the future perspectives regarding the beneficial effects of Evs in the development of COVID-19 vaccines.


Subject(s)
COVID-19 , Extracellular Vesicles , Humans , SARS-CoV-2 , COVID-19 Vaccines/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
4.
Eur J Pharmacol ; 933: 175267, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-2031262

ABSTRACT

The ongoing COVID-19 pandemic is still a challenging problem in the case of infection treatment. The immunomodulatory effect of Nanocurcumin was investigated in the present study in an attempt to counterbalance the immune response and improve the patients' clinical symptoms. 60 confirmed COVID-19 patients and 60 healthy controls enrolled in the study. COVID-19 patients were divided into Nanocurcumin and placebo received groups. Due to the importance of the role of NK cells in this disease, the frequency, cytotoxicity, receptor gene expression of NK cells, and serum secretion levels of inflammatory cytokines IL-1ß, IL-6, TNF-α, as well as circulating C5a as a chemotactic factor an inflammatory mediator was evaluated by flow cytometry, real-time PCR and enzyme-linked immunosorbent assay in both experimental groups before and after the intervention. Given the role of measured factors in the progression and pathogenesis of COVID-19 disease, the results can help find appropriate treatments. The results of this study indicated that the Nanocurcumin could significantly increase the frequency and function of NK cells compared to the placebo-treated group. As an immunomodulatory agent, Nanocurcumin may be a helpful choice to improve NK cell function in COVID-19 patients and improve the clinical outcome of patients.


Subject(s)
COVID-19 Drug Treatment , Case-Control Studies , Chemotactic Factors/pharmacology , Cytokines/metabolism , Humans , Immunity , Inflammation Mediators/pharmacology , Interleukin-6 , Killer Cells, Natural , Pandemics , Tumor Necrosis Factor-alpha/metabolism
5.
J Drug Deliv Sci Technol ; 67: 102967, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1500027

ABSTRACT

The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.

6.
Hum Immunol ; 82(10): 733-745, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1293817

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 is associated with excessive inflammation, as a main reason for severe condition and death. Increased inflammatory cytokines and humoral response to SARS-CoV-2 correlate with COVID-19 immunity and pathogenesis. Importantly, the levels of pro-inflammatory cytokines that increase profoundly in systemic circulation appear as part of the clinical pictures of two overlapping conditions, sepsis and the hemophagocytic syndromes. Both conditions can develop lethal inflammatory responses that lead to tissue damage, however, in many patients hemophagocytic lymphohistiocytosis (HLH) can be differentiated from sepsis. This is a key issue because the life-saving aggressive immunosuppressive treatment, required in the HLH therapy, is absent in sepsis guidelines. This paper aims to describe the pathophysiology and clinical relevance of these distinct entities in the course of COVID-19 that resemble sepsis and further highlights two effector arms of the humoral immune response (inflammatory cytokine and immunoglobulin production) during COVID-19 infection.


Subject(s)
COVID-19/immunology , Immunity, Humoral/immunology , Animals , Cytokines/immunology , Humans , Inflammation/immunology , Lymphohistiocytosis, Hemophagocytic/immunology , SARS-CoV-2/immunology , Sepsis/immunology
7.
J Cell Biochem ; 122(10): 1389-1412, 2021 10.
Article in English | MEDLINE | ID: covidwho-1279371

ABSTRACT

The emergence of a new acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), the cause of the 2019-nCOV disease (COVID-19), has caused a pandemic and a global health crisis. Rapid human-to-human transmission, even from asymptomatic individuals, has led to the quick spread of the virus worldwide, causing a wide range of clinical manifestations from cold-like symptoms to severe pneumonia, acute respiratory distress syndrome (ARDS), multiorgan injury, and even death. Therefore, using rapid and accurate diagnostic methods to identify the virus and subsequently select appropriate and effective treatments can help improvement of patients and control the pandemic. So far, various treatment regimens along with prophylactic vaccines have been developed to manage COVID-19-infected patients. Among these, antibody-based therapies, including neutralizing antibodies (against different parts of the virus), polyclonal and monoclonal antibodies, plasma therapy, and high-dose intravenous immunoglobulin (IVIG) have shown promising outcomes in accelerating and improving the treatment process of patients, avoiding the viral spreading widely, and managing the pandemic. In the current review paper, different types and applications of therapeutic antibodies in the COVID-19 treatment are comprehensively discussed.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 Drug Treatment , COVID-19/epidemiology , Immunoglobulins, Intravenous/therapeutic use , Immunotherapy , Pandemics , SARS-CoV-2 , Humans
8.
Int Immunopharmacol ; 97: 107828, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1253058

ABSTRACT

In various pathological conditions, cellular immunity plays an important role in immune responses. Amongimmunecells, T lymphocytes pdomotecellular and humoralresponses as well as innate immunity. Therefore, careful investigation of these cells has a significant impact on accurate knowledge in COVID-19diseasepathogenesis. In current research, the frequency and function of various T lymphocytes involved in immune responses examined in SARS-CoV-2 patients with various disease severity compared to normal subjects. In order to make an accurate comparison among patients with various disease severity, this study was performed on asymptomatic recovered cases (n = 20), ICU hospitalized patients (n = 30), non-ICU hospitalized patients (n = 30), and normal subjects (n = 20). To precisely evaluate T cells activity following purification, their cytokine secretion activity was examined. Similarly, immediately after purification of Treg cells, their inhibitory activity on T cells was investigated. The results showed that COVID-19 patients with severe disease (ICU hospitalized patients) not only had a remarkable increase in Th1 and Th17 but also a considerable decrease in Th2 and Treg cells. More importantly, as the IL-17 and IFN-γ secretion was sharply increased in severe disease, the secretion of IL-10 and IL-4 was decreased. Furthermore, the inhibitory activity of Treg cells was reduced in severe disease patients in comparison to other groups. In severe COVID-19 disease, current findings indicate when the inflammatory arm of cellular immunity is significantly increased, a considerable reduction in anti-inflammatory and regulatory arm occurred.


Subject(s)
COVID-19/blood , COVID-19/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/virology , Adult , Aged , Cytokines/immunology , Cytokines/metabolism , Female , Healthy Volunteers , Humans , Immunity, Cellular , Inflammation/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-17/metabolism , Interleukin-4/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Male , Middle Aged , Severity of Illness Index , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Young Adult
9.
Life Sci ; 276: 119437, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1157592

ABSTRACT

In Coronavirus disease 2019 (COVID-19), a decreased number of regulatory T (Treg) cells and their mediated factors lead to a hyperinflammatory state due to overactivation of the inflammatory cells and factors during the infection. In the current study, we evaluated the Nanocurcumin effects on the Treg cell population and corresponding factors in mild and severe COVID-19 patients. To investigate the Nanocurcumin effects, 80 COVID-19 patients (40 at the severe stage and 40 at the mild stage) were selected and classified into Nanocurcumin and placebo arms. In both the Nanocurcumin and placebo groups, the Treg cell frequency, the gene expression of Treg transcription factor forkhead box P3 (FoxP3), and cytokines (IL-10, IL-35, and TGF-ß), as well as the serum levels of cytokines were measured before and after treatment. In both mild and severe COVID-19 patients, Nanocurcumin could considerably upregulate the frequency of Treg cells, the expression levels of FoxP3, IL-10, IL-35, and TGF-ß, as well as the serum secretion levels of cytokines in the Nanocurcumin-treated group compared to the placebo group. The abovementioned factors were remarkably increased in the post-treatment with Nanocurcumin before pre-treatment conditions. By contrast, it has been observed no notable alteration in the placebo group. Our findings revealed the SinaCurcumin® effective function in a significant increase in the number of Treg cells and their mediated factors in the Nanocurcumin group than in the placebo group in both mild and severe patients. Hence, it would be an efficient therapeutic agent in rehabilitating COVID-19 infected patients.


Subject(s)
COVID-19 Drug Treatment , Curcumin/pharmacology , T-Lymphocytes, Regulatory/drug effects , Adult , Aged , COVID-19/immunology , COVID-19/virology , Cytokines/drug effects , Cytokines/immunology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression/drug effects , Humans , Interleukin-10/immunology , Interleukins/immunology , Male , Middle Aged , Nanomedicine/methods , RNA, Viral/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/immunology
10.
Clin Immunol ; 226: 108712, 2021 05.
Article in English | MEDLINE | ID: covidwho-1118363

ABSTRACT

In the past year, an emerging disease called Coronavirus disease 2019 (COVID-19), caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been discovered in Wuhan, China, which has become a worrying pandemic and has challenged the world health system and economy. SARS-CoV-2 enters the host cell through a specific receptor (Angiotensin-converting enzyme 2) expressed on epithelial cells of various tissues. The virus, by inducing cell apoptosis and production of pro-inflammatory cytokines, generates as cytokine storm, which is the major cause of mortality in the patients. This type of response, along with responses by other immune cell, such as alveolar macrophages and neutrophils causes extensive damage to infected tissue. Newly, a novel cell-based therapy by Mesenchymal stem cell (MSC) as well as by their exosomes has been developed for treatment of COVID-19 that yielded promising outcomes. In this review study, we discuss the characteristics and benefits of MSCs therapy as well as MSC-secreted exosome therapy in treatment of COVID-19 patients.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Exosomes/metabolism , Mesenchymal Stem Cell Transplantation/adverse effects , Precision Medicine/methods , B-Lymphocytes/immunology , COVID-19/pathology , Drug Carriers/metabolism , Drug Delivery Systems/methods , Humans , Pandemics , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , COVID-19 Drug Treatment
11.
J Cell Physiol ; 236(7): 5325-5338, 2021 07.
Article in English | MEDLINE | ID: covidwho-995973

ABSTRACT

In novel coronavirus disease 2019 (COVID-19), the increased frequency and overactivation of T helper (Th) 17 cells and subsequent production of large amounts of proinflammatory cytokines result in hyperinflammation and disease progression. The current study aimed to investigate the therapeutic effects of nanocurcumin on the frequency and responses of Th17 cells in mild and severe COVID-19 patients. In this study, 40 severe COVID-19 intensive care unit-admitted patients and 40 patients in mild condition were included. The frequency of Th17 cells, the messenger RNA expression of Th17 cell-related factors (RAR-related orphan receptor γt, interleukin [IL]-17, IL-21, IL-23, and granulocyte-macrophage colony-stimulating factor), and the serum levels of cytokines were measured in both nanocurcumin and placebo-treated groups before and after treatment. A significant decrease in the number of Th17 cells, downregulation of Th17 cell-related factors, and decreased levels of Th17 cell-related cytokines were found in mild and severe COVID-19 patients treated by nanocurcumin compared to the placebo group. Moreover, the abovementioned parameters were significantly decreased in the nanocurcumin-treated group after treatment versus before treatment. Curcumin could reduce the frequency of Th17 cells and their related inflammatory factors in both mild and severe COVID-19 patients. Hence, it could be considered as a potential modulatory compound in improving the patient's inflammatory condition.


Subject(s)
COVID-19 Drug Treatment , Curcumin/therapeutic use , Immunomodulation/drug effects , Nanoparticles/therapeutic use , Th17 Cells/drug effects , Adult , Cytokines/metabolism , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Male , Middle Aged , Nanoparticles/administration & dosage , SARS-CoV-2/drug effects , Severity of Illness Index , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/virology , Th17 Cells/metabolism
12.
Int Immunopharmacol ; 89(Pt B): 107088, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-880513

ABSTRACT

BACKGROUND: As an ongoing worldwide health issue, Coronavirus disease 2019 (COVID-19) has been causing serious complications, including pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. However, there is no decisive treatment approach available for this disorder, which is primarily attributed to the large amount of inflammatory cytokine production. We aimed to identify the effects of Nano-curcumin on the modulation of inflammatory cytokines in COVID-19 patients. METHOD: Forty COVID-19 patients and 40 healthy controls were recruited and evaluated for inflammatory cytokine expression and secretion. Subsequently, COVID-19 patients were divided into two groups: 20 patients receiving Nano-curcumin and 20 patients as the placebo group. The mRNA expression and cytokine secretion levels of IL-1ß, IL-6, TNF-α and IL-18 were assessed by Real-time PCR and ELISA, respectively. RESULT: Our primary results indicated that the mRNA expression and cytokine secretion of IL-1ß, IL-6, TNF-α, and IL-18 were increased significantly in COVID-19 patients compared with healthy control group. After treatment with Nano-curcumin, a significant decrease in IL-6 expression and secretion in serum and in supernatant (P = 0.0003, 0.0038, and 0.0001, respectively) and IL-1ß gene expression and secretion level in serum and supernatant (P = 0.0017, 0.0082, and 0.0041, respectively) was observed. However, IL-18 mRNA expression and TNF-α concentration were not influenced by Nano-curcumin. CONCLUSION: Nano-curcumin, as an anti-inflammatory herbal based agent, may be able to modulate the increased rate of inflammatory cytokines especially IL-1ß and IL-6 mRNA expression and cytokine secretion in COVID-19 patients, which may cause an improvement in clinical manifestation and overall recovery.


Subject(s)
COVID-19 Drug Treatment , Curcumin/therapeutic use , Cytokines/blood , SARS-CoV-2 , Adult , Aged , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , Cytokines/genetics , Double-Blind Method , Female , Humans , Male , Micelles , Middle Aged , Nanotechnology , RNA, Messenger/analysis , Young Adult
13.
J Cell Physiol ; 236(4): 2829-2839, 2021 04.
Article in English | MEDLINE | ID: covidwho-756256

ABSTRACT

In the course of the coronavirus disease 2019 (COVID-19), raising and reducing the function of Th17 and Treg cells, respectively, elicit hyperinflammation and disease progression. The current study aimed to evaluate the responses of Th17 and Treg cells in COVID-19 patients compared with the control group. Forty COVID-19 intensive care unit (ICU) patients were compared with 40 healthy controls. The frequency of cells, gene expression of related factors, as well as the secretion levels of cytokines, were measured by flow cytometry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay techniques, respectively. The findings revealed a significant increase in the number of Th17 cells, the expression levels of related factors (RAR-related orphan receptor gamma [RORγt], IL-17, and IL-23), and the secretion levels of IL-17 and IL-23 cytokines in COVID-19 patients compared with controls. In contrast, patients had a remarkable reduction in the frequency of Treg cells, the expression levels of correlated factors (Forkhead box protein P3 [FoxP3], transforming growth factor-ß [TGF-ß], and IL-10), and cytokine secretion levels (TGF-ß and IL-10). The ratio of Th17/Treg cells, RORγt/FoxP3, and IL-17/IL-10 had a considerable enhancement in patients compared with the controls and also in dead patients compared with the improved cases. The findings showed that enhanced responses of Th17 cells and decreased responses of Treg cells in 2019-n-CoV patients compared with controls had a strong relationship with hyperinflammation, lung damage, and disease pathogenesis. Also, the high ratio of Th17/Treg cells and their associated factors in COVID-19-dead patients compared with improved cases indicates the critical role of inflammation in the mortality of patients.


Subject(s)
COVID-19/immunology , Inflammation/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Aged , Cytokines/immunology , Female , Humans , Inflammation/virology , Male , Middle Aged , SARS-CoV-2/immunology
14.
J Cell Physiol ; 235(12): 9098-9109, 2020 12.
Article in English | MEDLINE | ID: covidwho-607941

ABSTRACT

The ongoing outbreak of the recently emerged 2019 novel coronavirus (nCoV), which has seriously threatened global health security, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high morbidity and mortality. Despite the burden of the disease worldwide, still, no licensed vaccine or any specific drug against 2019-nCoV is available. Data from several countries show that few repurposed drugs using existing antiviral drugs have not (so far) been satisfactory and more recently were proven to be even highly toxic. These findings underline an urgent need for preventative and therapeutic interventions designed to target specific aspects of 2019-nCoV. Again the major factor in this urgency is that the process of data acquisition by physical experiment is time-consuming and expensive to obtain. Scientific simulations and more in-depth data analysis permit to validate or refute drug repurposing opportunities predicted via target similarity profiling to speed up the development of a new more effective anti-2019-nCoV therapy especially where in vitro and/or in vivo data are not yet available. In addition, several research programs are being developed, aiming at the exploration of vaccines to prevent and treat the 2019-nCoV. Computational-based technology has given us the tools to explore and identify potentially effective drug and/or vaccine candidates which can effectively shorten the time and reduce the operating cost. The aim of the present review is to address the available information on molecular determinants in disease pathobiology modules and define the computational approaches employed in systematic drug repositioning and vaccine development settings for SARS-CoV-2.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Biomedical Research , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drug Repositioning/methods , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2
15.
Respir Med Case Rep ; 30: 101090, 2020.
Article in English | MEDLINE | ID: covidwho-245355

ABSTRACT

We reported a 33-year-old female case with novel coronavirus disease 2019 (COVID-19) accompanied by Acute tubular necrosis (ATN). She had a gestational age of 34 weeks. The patient referred to treatment clinic for COVID-19 in Imam Reza hospital of Tabriz (Iran) after having flu-like symptoms. In radiologic assessment, ground glass opacity (GGO) with consolidation was found in upper right lobe. Lopinavir/ritonavir (200mg/50mg) two tablet tow times, Ribavirin 200mg every 6 h, and Oseltamivir 75mg tow times were given for the treatment of COVID-19. The medications used for treatment of pneumonia were Meropenem, Ciprofloxacin, Vancomycin. All doses of medications were administrated by adjusted dose assuming the patient is anephric. Also, a few supplements were also given after ATN development including daily Rocaltrol and Nephrovit (as a multivitamin appropriate for patients with renal failure), Folic acid and Calcium carbonate. The patient is still under ventilator with a Fraction of inspired oxygen (FiO2) of 60% and Positive end-expiratory pressure (PEEP) of eight. SpO2 is 94% but the patient's ATN problem has been resolved. We started weaning from mechanical ventilator. The patient is conscious with full awareness to time, person and place. The maternal well-being is achieved and her neonate was discharged.

SELECTION OF CITATIONS
SEARCH DETAIL